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This paper documents the testing and development of magnetometer-based
gyroless attitude and rate estimation algorithms for the Far Ultraviolet
Spectroscopic Explorer (FUSE). The results of two approaches are pre-
sented, one relies on a kinematic model for propagation, a method used
in aircraft tracking, and the other is a pseudo-linear Kalman filter that
utilizes Euler’s equations in the propagation of the estimated rate. Both
algorithms are tested using flight data collected over a few months after
the failure of two of the reaction wheels. The question of closed-loop sta-
bility is addressed. The ability of the controller to meet the science slew
requirements, without the gyros, is analyzed.

INTRODUCTION

The Far Ultraviolet Spectroscopic Explorer (FUSE) is equipped with two ring laser
gyros on each of the spacecraft body axes. In May 2001 one gyro failed. In July 2003
a second gyro failed. It is anticipated that all of the remaining gyros will fail, based on
intensity warnings. In addition to the gyro failure, two of four reaction wheels failed in late
2001. The spacecraft control now relies heavily on magnetic torque to perform the necessary
science maneuvers and hold on target. The only sensor consistently available during slews
is a magnetometer. Thus, this work focuses on the development and testing of attitude and
angular rate estimation algorithms using magnetometer only data for the FUSE satellite.

Estimating the attitude at a given time point requires at least two vector measurements.
With only one vector measurement, attitude estimation is possible with a recursive algo-
rithm and a vector that changes direction over time. Since the magnetic field vector changes
direction, it is suitable for a single sensor estimation algorithm. However, the attitude es-
timate must be propagated from one time to the next with an estimate of the spacecraft
rate. Typically the rate is supplied by a gyro. Without a gyro, an estimate of the rate must
be provided by some other means.
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Gyros are notorious, even those of the highest grade, for their low reliability. A case in
point is provided by the Hubble space telescope (HST), which was put on safe hold mode
on November 13, 1999 after four of its six world class gyros failed.1 This fact, as well
as known cases of satellite thrusters anomalies, which often result in tumbling situations
(during which the gyros are saturated by the high spacecraft (SC) angular rates), have
motivated the need for the development of alternative rate estimation algorithms.

Several methods have been introduced in the past for angular rate estimation of gyro-
less SC. Some of these estimate the body angular rates within an attitude/attitude rates
estimator, where the measurements are the three components of a body referenced vector,
employing deterministic algorithms or filtering techniques. Most methods use the spacecraft
dynamic model, i.e., Euler’s equation of motion. Thus, Ref. 2 develops an extended Kalman
filter (EKF) for the estimation of SC attitude and angular rate from three-axis magnetome-
ter (TAM) readings. Assuming that the SC ephemeris is well known, the method is based
on a known model for the Earth’s magnetic field, takes about an orbit to converge, and
yields only coarse accuracy (making it suitable only for emergency modes). Challa and
Natanson3 combined a deterministic algorithm and an extended Kalman filter algorithm to
estimate attitude and a correction to the estimated rate, using magnetometer data. They
modeled the correction term as a first-order Markov model. The corrected rate estimate is
propagated with Euler’s equation. No a priori information about the state is required, as
the deterministic algorithm provides the a priori state for the filter.

In other methods,4–7 SC angular rate components are estimated separately, using either
deterministic or filtering based algorithms, but always making use of independently known
attitude information. The method presented in Ref. 4 is based on an extension of the
suboptimal interlaced Kalman filter scheme proposed in Ref. 8 and is able to estimate the
angular rates from two measured directional vectors, or from a single vector for the relatively
short duration of eclipses. In Ref. 5 two estimation methods are presented, based on the
ability to decompose the SC dynamics – namely, Euler’s equations including internal torque
– into the product of an angular rate dependent matrix and the angular vector itself. In
Ref. 6 a connection is established among various methods, available in the literature, that are
aimed at estimating the SC angular rates. It is shown how the so-called derivative approach,
where the attitude, in an arbitrary parameterization, is differentiated to relate it to the
satellite angular rate, and the estimation approach, where the raw measurements are fed
directly into a filter, are both based on an equation relating the attitude, its time derivative
and the angular rate. In Ref. 7 the quaternion is used for attitude representation, and two
SC angular rate estimation methods are proposed. The first uses differentiated quaternion
measurements to algebraically extract a noisy estimate of the angular rate vector, which
is successively fed into two filters similar to those presented in Ref. 5. In the second, the
raw attitude quaternion is fed directly into the filters, whose state vector is augmented to
comprise the three angular rate components.

A new class of attitude rate estimation algorithms has recently been introduced in
Refs. 9–11. Reference 10, which applies the general approach of Ref. 9 to the special case
of Geomagnetic field measurements, assumes no attitude knowledge and uses sequential
readings of the Geomagnetic field direction only, assuming that this attitude reference vector
is fixed in inertial space. This renders its estimators completely independent of the SC
position, and allows their operation without the mechanization of a complicated spherical
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harmonics model of the Earth’s magnetic field. Thus, these algorithms are geared towards
applications such as de-tumbling, nutation damping, and momentum management without
using rate gyroscopes. Two algorithms are presented in Ref. 10, a coarse, single-frame
deterministic batch estimator, and a high-accuracy EKF. While the deterministic batch
estimator is less accurate, it nevertheless cannot diverge and its output can be used to
initialize the more sensitive EKF so as to avoid the latter algorithm’s divergence. Motivated
by Ref. 10, Ref. 11 introduces improved versions of both algorithms presented in Ref. 10.
Thus, the deterministic algorithm of Ref. 11 uses a global nonlinear least-squares solver to
determine the unknown angular momentum component along the magnetic field direction,
while the EKF is formulated to explicitly account for the normalization constraint on the
measured magnetic field direction vector, and estimates, in addition to the attitude rate
vector, also corrections to 5 of the 6 inertia matrix elements, and 2 error states of the
measured magnetic field direction. It should be noted that the methods of Refs. 9–11 are
all model-based, that is, they use the SC Euler’s equation of motion and, thus, are somewhat
sensitive to the SC model’s accuracy.

Two methods are examined in this work as candidates for the task of simultaneously
estimating FUSE’s attitude and angular rate from TAM only measurements. The first al-
gorithm considered is based on the integrated-rate parameters (IRP) approach.12,13 This
algorithm uses a kinematic approach to the spacecraft rate modeling, much like is done
in aircraft tracking. This approach is less sensitive to uncertainties in the spacecraft dy-
namics. This approach met both the attitude and rate knowledge requirement during the
inertial periods. However, the IRP filter performed poorly during slew maneuvers. The sec-
ond algorithm considered is the pseudo-linear rate estimation algorithm.14 This algorithm
combines an EKF algorithm with Euler’s equations to model the spacecraft dynamics in
a pseudo-linear approach. This approach requires the spacecraft actuator data from the
reaction wheels and magnetic torque bars. Due to problems with this data during inertial
periods, this filter did not adequately estimate the attitude.

The two algorithms are combined to form a hybrid IRP-Euler filter approach. The
IRP filter is used during inertial periods. During maneuvers, the kinematics model of the
IRP filter is replaced with the dynamics model based on Euler’s equations. Modeling the
movement of the solar arrays during a maneuver improved the dynamics model used in the
pseudo-linear algorithm, resulting in a dramatic decrease in the propagation errors. The
hybrid algorithm successfully provided the required attitude and rate knowledge during the
inertial periods and closely followed the maneuvers.

Tests of the hybrid IRP-Euler filter approach, with a variety of data sets, are provided.
Fortunately for our analysis, the FUSE project was able to provide a copious amount of
flight data. The estimated attitudes are compared to the onboard attitude estimate which
is an extended Kalman filter using the science star tracker and the ring laser gyros. The
estimated rates are compared to the ring laser gyro output, compensated for gyro bias
errors. During a maneuver, the science star tracker is not used. The gyro data provides the
necessary accuracy for the onboard algorithm during the maneuver. The attitude and rate
error accuracy requirements are 2 degrees and 20 arc-sec/sec, respectively, except during
the maneuver period. Operating within these requirements allows the science star tracker
to identify and track stars following a slew maneuver. Once the star tracker identifies stars,
the attitude and rate estimates are provided by the star tracker (the star tracker estimates

3



a quaternion which is numerically differentiated to provide the rate). The rate estimates
provided by the star tracker are comparable in accuracy to the gyro data, provided the
spacecraft rates are maintained within the rate requirement.

Finally, the algorithm is required to work with a controller. This is the most challenging
requirement. A closed loop simulation is developed with the hybrid IRP-Euler filter pro-
viding the state estimates for a quaternion feedback controller.15 The truth model consists
of integrating Euler’s equation as well as the quaternion kinematic equation. The magne-
tometer is modeled as the true field in body coordinates plus white noise. As might be
expected, the controller’s performance is highly dependent on the accuracy of the estimator
and the estimator’s accuracy is highly dependent on the dynamics of the spacecraft induced
by the controller. The remainder of the paper is devoted to summaries of the estimation
algorithms, the controller simulation, and test results.

IRP ALGORITHM SUMMARY

The IRP algorithm is a sequential filter for estimating both the spacecraft attitude
and rate from vector measurements, avoiding the use of the uncertain spacecraft dynamics
model. The algorithm is only briefly summarized herein. A detailed description can be
found in Ref. 12.

The attitude matrix evolves using an integrated rate parameters method. The attitude
matrix differential equation is given as

Ḋ(t) = Ω(t)D(t) (1)

where D(t) is the spacecraft attitude matrix. Ω(t) = −[ω(t)×], with ω(t) the spacecraft
angular velocity and [ω(t)×] defined as the cross product matrix

[ω(t)×] ,




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (2)

Expressing the attitude in terms of the integrated rate parameters, leads to a discrete-time
version of the attitude matrix evolution given by Eq. (1), written compactly as12

D(k + 1) = D[θ(k + 1)− θ(k), ω(k + 1), ω̇(k + 1), D(k)] (3)

where the integrated rate parameter vector at time k is

θ(k) = [θ1(k) θ2(k) θ3(k)]T (4)

and

θi(k) ,
∫ tk

t0

ωi(τ)dτ (5)

where ωi = ωx, ωy, ωz for i = 1, 2, 3, respectively.
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The IRP algorithm models the spacecraft angular acceleration as a zero-mean stochastic
process with an exponential autocorrelation function, rather than relying on the nonlinear
spacecraft dynamics model given by Euler’s equation. The first-order Markov process is

ω̈(t) = −Λω̇(t) + ν̃(t) (6)

where Λ is a diagonal matrix containing the acceleration decorrelation times. The driving
noise, ν̃(t), is a zero-mean white process with power spectral density matrix Q̃(t).12

Finally, the state vector in the IRP algorithm is given as

x(t) = [θ(t)T ω(t)T ω̇(t)T ]T (7)

The discrete time state equation is

x(k + 1) = Φ(T )x(k) + ν(k)

where ν(k) is a zero-mean, white noise sequence, with covariance matrix Q(k).12 For a
sampling interval, T, the state transition matrix for the discrete-time state equation is

Φ(T ) =




I TI Λ−2(e−ΛT − I + TΛ)
0 I Λ−1(I − e−ΛT )
0 0 e−ΛT


 (8)

Explicit expressions for the entries of the covariance matrix Q(k) appear in Ref. 12.

Vector Measurement and Algorithm Update

The magnetometer vector measurement, in spacecraft body coordinates, is related to
the true magnetic field vector as

b(k + 1) = D(k + 1)r(k + 1) + nb(k + 1) (9)

where nb(k+1) is a white sensor measurement noise, b(k+1) and r(k+1) are the magnetic
field vectors in body and reference coordinates, respectively. The reference field is generated
with a 10th order International Geomagnetic Reference Field model.16

Expanding Eq. (9) about the predicted state estimate results in the following relationship

b(k + 1)− D̂(k + 1|k)r(k + 1) = H(k + 1)δx(k + 1) + nb(k + 1) (10)

where D̂(k+1|k) is the estimated attitude at time, k, propagated to time, k+1 and H(k+1)
is the observation matrix.12 The error term δx(k + 1) is defined as

δx(k + 1) = x(k + 1)− x̂(k + 1 | k) (11)

where x̂(k + 1 | k) is the predicted state estimate at time k + 1 based on measurements up
to time k. The state is then updated in the usual extended Kalman filter approach

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(b(k + 1)− D̂(k + 1|k)r(k + 1)) (12)
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The gain matrix K(k + 1) is computed according to

K(k + 1) = P (k + 1|k)HT (k + 1)[H(k + 1)P (k + 1|k)HT (k + 1) + R]−1 (13)

where P (k +1|k) is the propagated covariance matrix and R is the covariance matrix of the
white sensor measurement noise and is assumed to be constant. The covariance matrix is
updated according to

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k)[I −K(k + 1)H(k + 1)]T

+ K(k + 1)RK(k + 1)T (14)

Following the state update, the attitude matrix is updated with the integrated rate pa-
rameters, the state is adjusted for a reset of the integrated rate parameters (since they are
completely incorporated into the attitude matrix), and then the attitude matrix is normal-
ized.12

IRP Prediction

The state is propagated forward with

x(k + 1 | k) = Φ(T )x̂c(k | k) (15)

where Φ(T ) is given in Eq. (8), and x̂c(k | k) is the state update after reset. The covariance
is propagated according

P (k + 1 | k) = Φ(T )P (k | k)Φ(t)T + Q(k) (16)

The attitude matrix is propagated forward as a function of the propagated state and the
current, orthogonalized attitude matrix.12

PSEUDO-LINEAR DYNAMICS MODEL

The IRP algorithm provided estimates of the attitude and rate within the FUSE re-
quirements during the inertial periods. During the maneuvers, the rate estimates did not
follow the gyro data adequately. In an attempt to improve the rate estimate during a ma-
neuver, the IRP rate propagation was augmented with a pseudo-linear version of Euler’s
equation.14

The dynamics equation of a rigid spacecraft is given, in general, as

d

dt
(I(t)ω(t) + h(t)) = T (t)

İ(t)ω(t) + I(t)ω̇(t) + ḣ(t) + ω(t)× (I(t)ω(t) + h(t)) = T (t) (17)

where I(t) is the spacecraft inertia matrix, h(t) is the angular momentum of the spacecraft
reaction wheels, and T (t) is the external torque acting on the spacecraft. Inverting the
inertia matrix and rearranging the terms, Eq. (17) becomes

ω̇(t) = I−1(t)([(I(t)ω(t) + h(t))×]− İ(t))ω(t) + I−1(t)(T − ḣ(t)) (18)
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Let F (ω(t)) = I−1(t)([(I(t)ω(t) + h(t))×]− İ(t)) (note that this is not a unique represen-
tation14) and u(t) = I−1(t)(T − ḣ(t)). Eq. (18) is then written as

ω̇(t) = F (ω(t))ω(t) + u(t) (19)

In the pseudo-linear approach, Eq. (19) is treated as a ‘linear’ equation

ω̇(t) = F (ω̂(t))ω(t) + u(t) (20)

where ω̂(t) is the current estimate of the angular velocity. The angular velocity is propagated
by discretely solving Eq. (20).

The external torques considered in Eq. (20) include an estimate of gravity gradient and
the torque produced by the magnetic torque rods. The reaction wheel data is included, and
the derivative of the reaction wheel momentum is computed numerically. The FUSE solar
arrays reorient during a maneuver, thereby changing the spacecraft inertia. The derivative
of the inertia matrix is computed numerically, based on the changing indexing angle of the
solar arrays. The solar array inertia is converted to body coordinates with the array angle
and added to the spacecraft body inertia.

HYBRID ALGORITHM

The hybrid algorithm used to estimate the FUSE attitude and rate is a combination
of the pseudo-linear dynamics model with the IRP algorithm. The IRP algorithm is im-
plemented as outlined above. First, the state is updated according to Eq. (12) with the
magnetometer data. The covariance is updated according to Eq. (14). Next, the attitude
matrix is computed with the updated state vector components and the a priori state vector
components using Eq. (3). The state is then reset, and the attitude matrix is normalized
using the following approximate orthogonalization method12

D∗(k + 1|k + 1) = (
3
2
I− 1

2
D(k + 1|k + 1)D(k + 1|k + 1)T )D(k + 1|k + 1) (21)

The state is propagated with the acceleration model. The state transition matrix and
the covariance matrix are first computed. The state and covariance are propagated with
Eqs. (15) and (16), respectively. However, the angular rate is simultaneously propagated
with the pseudo-linear equation given in Eq. (20), given discretely as

ω̂(k + 1|k) = ω̂(k|k) + (F (ω̂(k|k))ω̂(k|k) + u(k))∆t (22)

where ∆t is the propagation time interval and u(k) = I−1(k)(T (k) − h(k)−h(k−1)
∆t ). Again,

T (k) is the sum of the estimated gravity gradient torque at time, k, and the magnetic
torque. The reaction wheel momentum at time, k, is given by h(k). The term h(k)−h(k−1)

∆t
is the estimated derivative of the reaction wheel momentum.

At the end of the propagation cycle, the angular rate in the IRP estimated state vector
is replaced with the rate propagated with the spacecraft dynamics.

x̂(k + 1|k) = [θ̂(k + 1|k)T ω̂(k + 1|k)T ˆ̇ω(k + 1|k)T ] (23)
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where ω̂(k + 1|k) is given in Eq. (22). The process repeats as the IRP update cycle is
performed with the hybrid propagated state vector.

This method resulted from an attempt to improve the FUSE attitude and rates esti-
mated during a maneuver. Theoretical considerations on the impact of combining the two
algorithms in a brute force manner are not given. Such a study is a subject for future
research.

FUSE TEST RESULTS

The hybrid IRP-Euler filter algorithm is tested with several FUSE data sets. All the
data sets contain maneuvers. In all of the cases with standard slew maneuvers, the IRP-
Euler filter met the accuracy requirements. Examples from two data sets with typical slew
maneuvers are presented first. The first data set contains two slew maneuvers. Figure 1
shows that the attitude estimate is within the two degree requirement, shown by a solid
line at ±2 degrees. Figure 2 shows that the rate estimate is within the 20 arc-sec/sec
requirement, also shown as a solid line at ±20 arc-sec/sec. Finally, Figure 3 shows the rate
estimate, the dashed line, and the gyro data, solid line. The z axis is the noisiest, but is
still within the requirements.
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Figure 1 Attitude Errors for Day 68 of 2002 with 2 Degree Limit, (a) X Axis,
(b) Y Axis (c) Z Axis

The second data set contains four maneuvers. The results are given in figures 4 through
6. Again, in all cases, the attitude and rate estimates are within the requirements.

Next, the combined algorithm is tested on data containing large maneuvers. First,
results from a long, continuous maneuver are presented. Figure 7 shows that the attitude
error requirements are met most of the time. The attitude errors on the Y axis exceed the
2 degree requirement 3 times, reaching approximately 3 degrees at one point, and the Z
attitude errors reach -4 degrees at one point. Figure 8 shows also that the rate requirements
are met, except during one portion of the maneuver on the Z axis. The rate errors on the
Z axis reach -30 arcsec/sec at one point. Finally, Figure 9 shows that the rate estimate
follows the gyro data during the maneuver.
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Figure 2 Rate Errors for Day 68 of 2002 with 20 arc-sec/sec Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 3 Estimated and Gyro Rates for Day 68 of 2002. Dashed line: Hybrid
algorithm, solid line: gyro data, (a) X axis, (b) Y axis, (c) Z Axis
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Figure 4 Attitude Errors for Day 80 of 2002 with 2 Degree Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 5 Rate Errors for Day 80 of 2002 with 20 arc-sec/sec Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 6 Estimated and Gyro Rates for Day 80 of 2002. Dashed line: Hybrid
algorithm, solid line: gyro data, (a) X Axis, (b) Y Axis (c) Z Axis
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Figure 7 Attitude Errors for Day 102 of 2002 with 2 Degree Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 8 Rate Errors for Day 102 of 2002 with 20 arc-sec/sec Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 9 Estimated and Gyro Rates for Day 102 of 2002. Dashed line: Hybrid
algorithm, solid line: gyro data, (a) X Axis, (b) Y Axis (c) Z Axis
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The last data set presented contains a series of sequential maneuvers, desired to ma-
neuver the spacecraft through a large angle. Figures 10 and 11 show that the attitude and
rate requirements are met in the beginning, but fail near the end of the data, the attitude
errors exceed 5 degrees in both the X and Z axes, and the rate errors exceed ±50 arsec/sec.
Figure 12 shows that the rate estimates follow the gyro data to some extent, but not as well
as in previous data sets. The algorithm, as given, does not work well for this scenario.
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Figure 10 Attitude Errors for Day 99 of 2002 with 2 Degree Limit, (a) X Axis,
(b) Y Axis (c) Z Axis
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Figure 11 Rate Errors for Day 99 of 2002 with 20 arc-sec/sec Limit, (a) X Axis,
(b) Y Axis (c) Z Axis

QUATERNION FEEDBACK CONTROL ALGORITHM

A simple closed loop simulation is developed to provide insight into the stability of the
combined IRP-Euler algorithm with a feedback controller. The feedback control algorithm
is a quaternion feedback control15

u(t) = −kpε̃c(t)− kDω(t) (24)

12



200 400 600 800

−200

−150

−100

−50

0

50

100

Time (min)

R
a

te
 (

a
rc

se
c/

se
c)

(a)

200 400 600 800
−200

−150

−100

−50

0

Time (min)

R
a

te
 (

a
rc

se
c/

se
c)

(b)

200 400 600 800
−200

−150

−100

−50

0

50

100

150

200

250

Time (min)

R
a

te
 (

a
rc

se
c/

se
c)

(c)

Figure 12 Estimated and Gyro Rates for Day 99 of 2002. Dashed line: Hybrid
algorithm, solid line: gyro data, (a) X Axis, (b) Y Axis (c) Z Axis

where ε̃c(t) is the vector part of the quaternion error, q̃c(t) = [ε̃c(t)T η̃c(t)]. The quaternion
error is computed as

q̃c(t) = q(t)⊗ q−1
d

where qd is the desired quaternion, and is constant. Given perfect measurements, q(t) and
ω(t), the closed loop system, with the control given by Eq. 24, is globally, asymptotically
stable.

The true quaternion and rate are not known. Instead, estimates of the quaternion
and rate are provided by the IRP-Euler algorithm. In a certainty equivalence fashion, the
estimates are used in Eq. 24 as

û(t) = −kp
ˆ̃εc(t)− kDω̂(t) (25)

The resulting closed loop system is asymptotically stable to within an RMS bound, given
that the estimates are RMS bounded. The RMS error bounds of the closed loop system
depend on the RMS bounds of the estimates, as well as the system parameters.

CLOSED LOOP SIMULATION TEST RESULTS

The initial closed loop simulation is intended to examine the stability properties of the
closed loop system, comprised of the combined IRP-Euler algorithm and the quaternion
feedback controller. The magnetometer measurements are corrupted with white noise. One
reaction wheel along the spacecraft z axis is modeled, as well as three magnetic torque rods
along each of the body axes (FUSE also has one operating skew wheel, but only the z axis
wheel is included in this preliminary study for simplicity). The reaction wheel and torque
rod data are not contaminated. The magnetometer data is not corrupted by the magnetic
torque rods. The control û(t) is resolved into a wheel torque and magnetic torque. The
magnetic moment is limited to 130 Amp m2 on each axis. The inertia matrix is a diagonal
matrix, with the components [3550, 3390, 690] kg m2 on the main diagonal.

The closed loop simulation run consisted of 1000 iterations, each iteration lasting approx-
imately 60 minutes. The target quaternion direction is varied randomly in each iteration,
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and the rotation angle is 20 degrees. Figure 13 shows the attitude error angles between
the actual attitude and the target attitude at the end of 60 minutes for each of the 1000
iterations. In all cases, the errors are within 2 degrees. Figure 14 shows the errors between
the true attitude and the estimated attitude at the end of 60 minutes for each iteration.
Figure 15 shows the true rate, again at the end of 60 minutes for each iteration. In most
cases, the rate is within 20 arc-sec/sec. Figure 16 is a single test case, showing the attitude
error throughout a single iteration. Figure 17 shows the true rate during the maneuver,
again throughout a single iteration.
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Figure 13 Actual Attitude Error Angles After 60 Minutes. (a) X Axis, (b) Y
Axis, (c) Z Axis
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Figure 14 Attitude Estimation Error Angles After 60 Minutes. (a) X Axis, (b)
Y Axis, (c) Z Axis

This preliminary simulation indicates that the closed-loop system is probably stable,
given few disturbances. Additional simulations, with a more complex set of disturbances, is
required. Examples of additional disturbances to be considered are gravity gradient torques,
reaction wheel disturbances, reaction wheel control torque limits, magnetometer bias, and
alignment errors.
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Figure 15 True Rates After 60 Minutes. (a) X Axis, (b) Y Axis, (c) Z Axis
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Figure 16 Actual Attitude Errors for 20 Degree Attitude Maneuver. (a) X
Axis, (b) Y Axis, (c) Z Axis
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Figure 17 True Rates for 20 Degree Attitude Maneuver. (a) X Axis, (b) Y
Axis, (c) Z Axis
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CONCLUSIONS

Two estimation algorithms, designed to estimate spacecraft attitude and rate, are com-
bined to provide the attitude and rate estimates for FUSE. The first algorithm, the IRP
algorithm, uses a kinematic approach in modeling the angular acceleration of the spacecraft.
The second algorithm, the pseudo-linear extended Kalman filter, relies on the spacecraft
dynamics model in the rate propagation. The only attitude sensor available is a magnetome-
ter. Combining the two algorithms into the hybrid IRP-Euler algorithm, provides attitude
and rate estimates within the accuracy requirements for most maneuver scenarios. A pre-
liminary closed loop analysis indicates that the IRP-Euler filter with a quaternion feedback
control algorithm is stable for modest sized maneuvers. Additional work is required to
determine the full range of stability for the closed loop system.
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